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Pesticide use is widespread in the United
States. A billion pounds or more of conven-
tional pesticides are used annually, and 85%
of households store at least one pesticide in
their homes (Adgate et al. 2000; Kiely et al.
2004). Approximately 78% of conventional
pesticide use is for agriculture, 10% is used
in the home and garden, and the remainder
is for government, commercial building, and
industrial use. Recent biologic monitoring
studies indicate that pesticide exposures are
ubiquitous, including among women of
childbearing age, pregnant women, children,
and fetuses (Adgate et al. 2001; Barr et al.
2004; Berkowitz et al. 2003; Bradman et al.
2003; Lu et al. 2000; Whyatt and Barr 2001;
Whyatt et al. 2003). To test the hypothesis
that exposures to nonpersistent pesticides
in utero and postnatally increase the risk of
poor performance on neurobehavioral and
cognitive examinations, the National
Children’s Study (NCS) will need to charac-
terize exposures to a broad array of pesti-
cides. The Exposure to Chemical Agents and
Development and Behavior 2002 Inter-
working Group to the NCS, for example, has
recommended that this hypothesis focus on
current-use neurotoxic insecticides, including
organophosphates (OPs), carbamates, pyre-
throids, and nicotinoids, and additionally
consider other current-use pesticides.

Exposure assessment will be challenging.
Nonpersistent pesticides do not accumulate in
the body and are generally excreted within
hours and days, often via water-soluble
metabolites in urine. Biologic exposure mark-
ers tend to reflect low-level, transient exposures
that are highly variable. Further, the pesticides
often degrade rapidly in the ambient environ-
ment. Although persistence in the indoor envi-
ronment appears longer (Gurunathan et al.
1998; Lewis et al. 1994; Whyatt et al. 2004a),
indoor levels can be highly variable depending
on use patterns. Pesticide exposures can also
vary by season (Berkowitz et al. 2003; Whyatt
et al. 2003), and exposures can occur through
multiple pathways and routes. Diet may be a
significant source for some children (Clayton
et al. 2003). Dermal exposure and non-
intentional ingestion as well as inhalation may
all be important routes for pesticides used in
the home (Clayton et al. 2003; Fenske et al.
1990; Gurunathan et al. 1998; Lewis et al.
1994; Pang et al. 2002; Whitmore et al. 1994;
Whyatt et al. 2003). In addition, effects of the
pesticides may depend on the developmental
stage when exposure occurs (Slotkin 1999).
Experimental data for OPs indicate that the
developing brain could be vulnerable to expo-
sures from early embryonic life into childhood
(Eskenazi et al. 1999; Garcia et al. 2003;
Slotkin 1999). Thus, sampling to characterize

exposure will need to be intensive and multi-
media and will require repeat assessments dur-
ing pregnancy and early childhood. A
combination of environmental and biologic
monitoring, as well as collection of question-
naire data, will likely be involved.

Tables 1 and 2 present the sampling
framework proposed by the Exposure to
Chemical Agents Working Group of the
NCS for assessing exposures to nonpersistent
pesticides. Details on the NCS and the role of
the Exposure to Chemical Agents Work
Group are provided in the accompanying
article by Needham et al. (2005). A review of
monitoring and measurement methods for
assessing pesticide exposure is detailed below.
Barr et al. (2005a) provide an additional
overview of biologic monitoring.

Biologic Monitoring

Biomonitoring has the advantage over envi-
ronmental monitoring of providing integrat-
ing dosimeters summing exposures from all
routes and may more accurately reflect the
dose to the target tissue. However, biologic
half-lives of nonpersistent pesticides are short,
and, thus, biomarkers generally provide only
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The National Children’s Study is a proposed longitudinal cohort study to evaluate the relationships
between children’s health and the environment. Enrollment is estimated to begin in
September 2005, and 100,000 children will be followed from preconception or early pregnancy
until adulthood. Among multiple health outcomes, the study is proposing to investigate whether
pre- and/or postnatal exposures to nonpersistent pesticides increase the risk of poor performance
on neurobehavioral and cognitive exams during infancy and early childhood. Characterization of
exposures will be challenging. Nonpersistent pesticides include many chemicals with biologic half-
lives on the order of hours or days. Exposures can occur through multiple pathways (e.g., food and
residential or agriculture pesticide use) and by multiple routes (inhalation, ingestion, dermal).
Effects may depend on the developmental stage when exposure occurs. Sequential sampling is
likely to be required and may involve a combination of environmental and biologic monitoring as
well as collection of questionnaire data. In this article we review measurements that can be used to
characterize exposures. These include biologic markers, personal and indoor air sampling tech-
niques, collection of dust, surface and dermal wipe samples, and dietary assessment tools. Criteria
for sample selection will necessitate evaluation of the time frame of exposure captured by the
measurement in relationship to critical windows of susceptibility, the cost and validity of the
measurements, participant burden, and variability in exposure routes across populations and at
different age periods. Key words: biomonitoring, early childhood, environment, exposure assess-
ment, in utero, National Children’s Study, pesticides. Environ Health Perspect 113:1092–1099
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transient dosimeters. Therefore, repeat sam-
pling designs will be necessary to characterize
exposure.

Urinary monitoring. The measurement of
pesticide metabolites in urine offers advantages
over other potential exposure biomarkers.
Urine is easy and noninvasive to collect, and
laboratory methods are available to measure
many different pesticide- and class-specific
metabolites. Collection from adults is straight-
forward, and pediatric urine bags can be used
with very young children. In one study
approximately 90% of 6-month-old infants
provided samples during assessments (Fenske
et al. 2005). However, urine is an unregulated
body fluid and varies from void to void in vol-
ume and in the concentration of endogenous
and exogenous chemicals (Barr et al. 2005b;
Wessels et al. 2003). This may not be true for
very young children (e.g., < 12 months)
because they feed and urinate frequently, but
variability in urinary dilution has not been
evaluated for this age group. Creatinine adjust-
ment of urinary metabolites has been the stan-
dard method for accounting for urine dilution.
However, urinary creatinine levels vary by age,
sex, race/ethnicity, and body mass index (Barr
et al. 2005b). Adjustments of urinary pesticide
levels by creatinine may not be appropriate,
therefore, in pregnant women and children.
A recent study suggests that for multiple regres-
sion analyses in health outcome studies, the
analyte concentration unadjusted for creatinine
should be included in the model, with urinary
creatinine added as a separate independent
variable (Barr et al. 2005b).

Spot urine samples are easiest to collect,
but no studies have assessed whether single or
serial spot urine samples can be used to clas-
sify daily or chronic pesticide exposures.
Several recent studies indicate that pesticide
metabolites in children’s spot urine samples
exhibit high intraindividual variability
(Adgate et al. 2001; Koch et al. 2002). In
addition, analyses have not been conducted to
evaluate whether 24-hr urine samples can be
used to classify chronic exposures. It is impor-
tant to note that a number of urinary valida-
tion studies are under way and should be
published within the next 2 years. One recent
study suggests that first morning void samples
may more accurately represent total daily
exposure (Kissel et al. 2005). Existing litera-
ture evaluating spot versus 24-hr urine sam-
ples for nutrients, renal function measures,
and some toxicants is mixed (Boeniger et al.
1993; Chitalia et al. 2001; Evans et al. 2000;
Hinwood et al. 2002; Kawasaki et al. 1982;
Kieler et al. 2003; Lee et al. 1996; Luft et al.
1983; Neithardt et al. 2002; Tsai et al. 1991;
Woods et al. 1998).

An additional concern that has recently
been raised about urinary biomarkers is that the
metabolites in urine may reflect exposure to the

metabolites themselves in the environment
rather than to the parent compound (Duggan
et al. 2003; Wilson et al. 2003). For example,
3,5,6-trichloro-2-pyridinol (TCPy), the specific
metabolite for chlorpyrifos, and several dialkyl
phosphates, the class-specific metabolites for
many OPs, have been found in food samples
(Lu et al. 2005; Wilson et al. 2003).

Blood monitoring. Blood monitoring has
advantages over urinary measurements in that
the parent compound, instead of a metabolite,
can be directly monitored (Barr et al. 2002).
Pesticide concentrations in blood may more
accurately reflect the absorbed dose and the
dose available to the target tissue because the
measured dose has not yet been eliminated
from the body. Whyatt et al. (2004b) recently
showed a significant inverse association
between chlorpyrifos levels in umbilical cord
blood and both birth weight and length,
whereas no association was seen between chlor-
pyrifos in maternal personal air samples meas-
ured during pregnancy and either parameter of
fetal growth. These results suggest that the bio-
marker may better reflect exposure from all
routes and the amount of insecticides absorbed
by the mother as well as the amount of the
absorbed dose that has been transferred to the
developing fetus (Fenske et al. 2005). Further,
unlike urinary levels, no corrections for dilu-
tion are necessary when quantifying contami-
nate levels in blood (Barr et al. 2002).
Additionally, it has recently been hypothesized
that blood levels may provide a better dosi-
meter than urinary levels for steady-state
exposures (Needham 2005). However, this
hypothesis has yet to be validated. The Centers
for Disease Control and Prevention (CDC) has
developed a sensitive and accurate analytical
method for quantifying 29 contemporary-
use pesticides in human serum or plasma (Barr
et al. 2002). However, laboratory methods

are not available for many OPs and other
pesticides in blood, including many without
specific- or class-specific metabolites in urine.
Finally, blood is invasive to collect, although
collection can be timed to coincide with med-
ically scheduled blood collections, such as dur-
ing the pregnancy glucose tolerance test (at
26 weeks gestational age), delivery, and during
12- and 24-month lead screens (Eskenazi et al.
2003; Fenske et al. 2005).

Other biologic monitoring. Laboratory
methods are also under development for pesti-
cides in saliva, meconium, and amniotic fluid,
although validated methods are available for
only a few compounds. Pesticides in saliva
should reflect blood plasma levels (depending
on the protein-binding capacity) and therefore
recent exposure (Lu et al. 1997, 1998).
Current saliva collection methods, which use a
cotton sponge, could pose a choking hazard to
very young children. Meconium, the first
bowel void of the newborn, is a concentrated
mixture of swallowed amniotic fluid, cells,
bile, and other materials and likely accumu-
lates in the third trimester. Measurement of
pesticides in meconium could provide an inte-
grated dosimeter for assessment of fetal expo-
sure in the third trimester (Whyatt and Barr
2001). However, this hypothesis has not been
validated. Measurement of pesticide metabo-
lites in amniotic fluid is feasible (Bradman
et al. 2003), but amniocentesis poses risks to
the fetus and therefore can be conducted only
when medically indicated. Thus, population-
wide sampling is not possible.

Few data are available on levels of non-
persistent pesticides in breast milk. Many non-
persistent pesticides are soluble in water and
therefore may partition to the water fraction of
breast milk. Furthermore, the log of the
octanol–water coefficient (log Kow)—a meas-
ure of fat solubility—suggests that some
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Table 1. Recommended preconception, pregnancy, and perinatal sample collection for nonpersistent
pesticide analysis. 

Trimester
Samples Preconception First Second Third Perinatal period

Maternal urinea,b � � � � �
Maternal blooda,b �c,d �d

Cord blooda,b �d

Meconium �
Colustrum/breast milka,e �
Maternal salivae � � � � �
Dietary assessmente,f �
Home/personal air samplea,b,g � �
Home composite dust/wipea,b,g � �
Other home samplesb,g,h Special studies
Outdoor samplesb,i Special studies
Questionnairea � � � � �
Ecologic analysis (e.g., GIS)a � � � � �

�, sample collection recommended. 
aMetrics that have been used in prior epidemiologic studies. bMedia with existing laboratory methods for likely target pesti-
cides (e.g., urine, dust, air, food). cBlood collection should coincide with glucose tolerance test. dBlood collection that is
normal part of medical care. Blood samples crucial for paraoxonase status and acetylcholinesterase activity. eMetrics that
are more experimental or costly. fDuplicate diet sampling, food frequency questionnaire, or other method (see text). gWe
recommend that air and/or composite dust or wipe samples be collected for each home lived in during pregnancy. Other
environmental samples should be considered for special studies of selected participants. hFor example, clothing dosime-
ters or hand wipes. iFor example, ambient air samples in agricultural area (see text).



nonpersistent OPs such as malathion (log
Kow = 4.5) could partition into the lipid frac-
tion of breast milk. Parathion, malathion,
fenchlorphos, and chlorpyrifos have been
detected in breast milk in studies from central
Asia and India (Lederman 1996; Sanghi et al.
2003). Fonofos and diazinon have been
detected in cows’ milk or butter fat after acute
exposure (Cook and Carson 1985; Spradbery
and Tozer 1996). These data suggest that OP
and possibly other nonpersistent pesticides
may be found in breast milk, although avail-
able data are extremely limited. The CDC and
the Center for Children’s Environmental
Health at the University of California,
Berkeley, are conducting a study to develop
laboratory methods to measure nonpersistent
pesticides in human breast milk. Results for
several OPs, carbamates, pyrethroids, phtha-
lates, fungicides, and dicarboximides are
promising. Numerous research studies indicate
that persistent organic pollutants [e.g., 1,1,1-
trichloro-2-(o-chlorophenyl)-2,2(p-chloro-
phenyl)ethane (DDT), polychlorinated
biphenyls (PCBs), and polybrominated
diphenyl ethers] bioaccumulate in fat and are
transferred to breast milk, thereby exposing
breast-feeding infants (Landrigan et al. 2002).

Environmental Monitoring

Measurements of pesticides in environmental
media can be used to augment biomonitoring
and, additionally, can provide information
about routes of exposure. In cases when no
biomarker is available, the environmental
measure may provide the only dosimeter of
exposure. For example, no laboratory methods
are available for measuring either the parent
compound or chemical-specific metabolite of
the OP oxydemeton methyl in biologic media.

Air monitoring. Many pesticides are semi-
volatile (Lewis 2001; Lewis et al. 2001) and

are readily detectable in indoor and personal
air samples. These include the OPs and carba-
mate insecticides; many of the older organo-
chlorine compounds; herbicides such as
alachlor, atrazine, 2,4-dichlorophenoxyacetic
acid (2,4-D) and dicamba; and several fungi-
cides (e.g., folpet and o-phenylphenol) (Geno
et al. 1995; Hsu et al. 1988). The pyrethroids
are less volatile, and some of the newer insecti-
cides (e.g., abamectin) are basically non-
volatile. Air sampling may thus not be the best
protocol for these less volatile compounds;
however, both semi- and nonvolatile pesticides
can be resuspended into air on particles by
human and pet activity (Lewis et al. 2001;
Nishioka et al. 1999, 2001). Pesticides can
reach indoor air as a result of volatilization off
of treated surfaces within the home or from
pesticides tracked into the house from outdoor
uses or from occupational take-home expo-
sures (Lewis et al. 2001; Lu et al. 2000;
Nishioka et al. 2001; Simcox et al. 1995).
There have been numerous prior studies of
pesticide levels in indoor air (Clayton et al.
2003; Esteban et al. 1996; Fenske et al. 1990;
Lewis et al. 1994, 2001; Pang et al. 2002;
Whitmore et al. 1994) and personal air
(Clayton et al. 2003; Whitmore et al. 1994;
Whyatt et al. 2002, 2003). Indoor air sam-
pling has been conducted over hours to weeks
at flow rates ranging from 0.5 to 4 L/min.
Sampler height needs to be considered, as pes-
ticide air concentrations may vary with height,
being greatest near the floor after indoor appli-
cation (Fenske et al. 1991; Lewis et al. 1994).
Because of participant burden, personal air
samples have generally been collected over
shorter time periods (24–48 hr) at the higher
flow rates (e.g., 4 L/min). However, a recent
study collected 6-day integrated average per-
sonal air samples at a flow rate of 1.25 L/min
from 74 children in Minnesota (Clayton et al.

2003; Quackenboss et al. 2000). Pesticide
detection limits depend on the analytical tech-
nique and amount of air sampled but are gen-
erally in the low nanogram per cubic meter
range (Clayton et al. 2003; Whitmore et al.
1994; Whyatt et al. 2003).

Prior studies have shown that inhalation
exposure to semivolatile pesticides in indoor air
can be substantial and may be a primary route
of exposure after residential use among homes
using insecticides (Fenske et al. 1990;
Whitmore et al. 1994; Whyatt et al. 2002,
2003). However, for any given pesticide/
exposure scenario, the primary route of expo-
sure (inhalation vs. ingestion or dermal) will
depend both on use patterns and on the
volatility of the pesticides. For example, an
aggregate exposure assessment of chlorpyrifos
found that inhalation exposures accounted for
approximately 85% of total daily dose (Pang
et al. 2002). Similarly, results from the U.S.
Environmental Protection Agency (EPA)
Nonoccupational Pesticide Exposure Study
indicate that 85% of the total daily exposure of
adults to airborne pesticides is from breathing
air inside the home (Whitmore et al. 1994). By
contrast, a recent assessment of children’s
exposure to chlorpyrifos, diazinon, malathion,
and atrazine determined that ingestion rather
than inhalation was the dominant route
(Clayton et al. 2003). Indoor air pesticides lev-
els have been shown to be considerably higher
than outdoor air levels.

Dust monitoring. Several researchers have
concluded that the majority of household pes-
ticides are better detected by dust sampling
than by air sampling (Butte and Heinzow
2002; Fenske et al. 2002b; Roberts et al.
1991; Whitmore et al. 1994). Multiple
organic chemicals (both persistent and non-
persistent) can be measured in a single house
dust sample, and samples without detectable
pesticides are rare. For example, laboratory
methods are available for measuring pesticides
(both semivolatile and nonvolatile), PCBs
and other organochlorine compounds, dioxin,
dibenzofurans, polycyclic aromatic hydrocar-
bons, and phthalates in house dust (Butte and
Heinzow 2002; Chuang et al. 1995; Lewis
et al. 1999; Moate et al. 2002; Rudel et al.
2003). Studies designed to characterize chil-
dren’s exposure to pesticides indicate that the
largest number of pesticides and the highest
concentrations are found in household dust
compared with air, soil, and food (Lewis et al.
1994; Simcox et al. 1995). Finally, whereas
air levels of semivolatile pesticides decline
rapidly after use, residues are more constant
in house dust and can still be detected for
months or years after use (Lewis et al. 1994;
Roinestad et al. 1993; Rudel et al. 2003).
Because of hand-to-mouth activities, house
dust may be a significant pesticide exposure
pathway for young children.
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Table 2. Recommended sample collection for nonpersistent pesticide analysis during early childhood.
Months Years

Samples 3 6 9 12 18 2 3 4 5

Urinea,b,c � � � � � � � � �
Blooda,c,d � � �
Breast milka,e � � � �
Salivae,f � � � �
Dietary assessmente,g � � � � � � �
Home air samplea,c,h Each home/year
Home dust or wipe samplesa,c,h Each home/year
Other home samplesc,h,i Special studies
Outdoor samplesc,j Special studies
Questionnairea � � � � � � �
Ecologic analysis (e.g., GIS)a � � � � � � � � �

�, sample collection recommended.
aMetrics that have been used in prior epidemiologic studies. bPediatric urine bag or diaper sample for non–toilet-trained
children. If not diaper, spot samples or multiple spots. Methods to measure pesticides in diapers under development.
cMedia with existing laboratory methods for likely target pesticides (e.g., urine, dust, air). dBlood collection at young ages
should coincide with CDC-recommended lead screen at 12 and 24 months. Ongoing research has also established that
blood collection at 4–5 years of age is feasible. eMetrics that are more experimental or costly. fChoking hazard for saliva
collection for children younger than 3 years with current protocol. gDuplicate diet sampling, food frequency question-
naire, or other method (see text). hWe recommend that air and/or composite dust or wipe samples be collected for each
home lived in. Other environmental samples should be considered for special studies of selected participants. iFor exam-
ple, clothing dosimeter, hand wipe. jFor example, ambient air samples in agricultural area (see text). 



Most prior studies have collected a sample
of house dust from carpets or rugs with the
high-volume, small-surface HVS-3 sampler
(Cascade Stamp Sampling Systems, Bend,
OR) (Lewis et al. 1994; Roberts and Dickey
1995; Simcox et al. 1995). Dust has also been
collected using other vacuuming devices
(Thompson et al. 2003), and several studies
have sampled noncarpeted areas, although
dust loading levels are much lower. In all
cases, the protocols are labor intensive because
they require that the sample be collected by
the study team. Studies have also collected
dust samples by asking the participants them-
selves to save the bag from a vacuum cleaner
(Roinestad et al. 1993). Colt et al. (1998)
compared levels of pesticides and other com-
pounds in dust obtained from used vacuum
cleaner bags with those collected by the
HVS-3 among 15 homes and found reason-
ably comparable results. This approach has the
advantage of relatively low cost of sample col-
lection. However, disadvantages include the
fact that participation is limited to those sub-
jects who own a vacuum cleaner. Further,
although the protocol allows determination of
contaminant concentrations per gram of dust,
pesticide loading (amount of pesticide/floor
area) cannot be assessed.

A limitation of dust sampling is that the
timing of application is not known, and levels
in the dust may reflect use months to years
before the sampling. Also, dust on hard sur-
faces may be readily available to transfer to
children’s skin and result in nondietary inges-
tion or dermal exposures, whereas dust lodged
deeply in carpets may not be available to chil-
dren. Carpet dust and dust from other surfaces
may function as a reservoir for household pesti-
cide contamination, recontaminating surfaces
and air after cleaning depending on the physi-
cal and chemical properties (“fugacity”) of the
specific compounds. Additionally, studies on
the inter-relationships of environmental and
personal exposures can be difficult to interpret.

Wipe samples. Initial attempts to look at
direct child exposures have included the use of
hand wipes to collect pesticides directly from
children’s hands. These methods include wip-
ing the child’s hand with sterile gauze dressing
pads that have been moistened with propanol
or asking the child to place his/her hand in a
bag containing propanol (Bradman et al.
1997; Geno et al. 1996; Lioy et al. 2000).
Gordon et al. (1999) found excellent correla-
tions between chlorpyrifos in indoor air and
corresponding dermal wipes but poor correla-
tions between chlorpyrifos in dust and dermal
wipes. Another study reported a weak associa-
tion between concentrations of OP pesticides
in house dust, loadings in house dust, and
concentration on hands, hand surface area,
and urinary levels of OP metabolites (Shalat
et al. 2003). However, hand loadings of OP

pesticides were more strongly associated with
urinary OP metabolite levels. This finding
suggests that on a cross-sectional basis, pesti-
cides on hands may be more strongly corre-
lated with exposure biomarkers. On a
longitudinal basis, however, the dust measure
may provide better classification of potential
and actual exposure. Dust wipe samples have
also been collected using the Edwards and
Lioy (EL) press sampler and the Lioy,
Wainman, and Weisel (LWW) surface wipe
sampler (Lioy et al. 2000). The EL sampler
has been designed to collect surface concentra-
tions of dust and pesticides that are representa-
tive of those adhering to the human hand
(Edwards and Lioy 1999). A significant corre-
lation was seen between chlorpyrifos levels in
EL surface and carpet samplers (Lioy et al.
2000). The LWW sampler has been used to
obtained dust samples from smooth surfaces
in the home (Lioy et al. 2000). A protocol that
is currently being validated involves mailing
study participants an alcohol wipe with
instruction for wiping dust on the top of a
specified doorframe. The sample is then
placed in a Ziploc bag and mailed back to the
study team. Advantages include low cost of
sample collection and low participant burden.
However, research is currently ongoing to
determine detection limits and detection fre-
quencies using this method. Other techniques
include use of clothing dosimeters such as cot-
ton gloves, union suits, and socks, as well as
alternative surface wipe techniques, to quan-
tify exposures (Fenske 1993; Lewis 2005).

Dietary sampling. Diet is a potentially sig-
nificant pathway of exposure to pesticides for
children (Clayton et al. 2003; Fenske et al.
2002a; National Academy of Sciences 1993).
Numerous studies have detected OP and
organochlorine insecticides and herbicides in
food, including chlorpyrifos, malathion,
dichlorodiphenyldichloroethylene (DDE),
diazinon, and atrazine (Clayton et al. 2003;
MacIntosh et al. 2001; Pang et al. 2002).
Market-basket surveys by the U.S. Department
of Agriculture (USDA) indicate that most food
types contain some pesticide residues (USDA
2002). For example, 65 and 82% of conven-
tionally grown vegetables and fresh fruits tested
by the USDA Pesticide Data Program (PDP)
from 1994 through 1999 contained one or
more pesticide residues (Baker et al. 2002).
However, pesticide concentrations vary signifi-
cantly across foods (Gunderson 1995). Low
detection frequencies, combined with highly
variable individual diets, make it difficult to
estimate individual dietary exposures using
food consumption questionnaires (MacIntosh
et al. 2001). Instead, studies have generally
estimated dietary exposures by measuring pes-
ticides in duplicate diet samples, in which
study participants prepare and collect duplicate
portions of all foods and beverages consumed

(Quackenboss et al. 2000; Wilson et al. 2004).
These studies are considered the gold standard;
however, they are extremely time intensive and
costly and place substantial burdens on partici-
pants. Duplicate diet studies may also under-
estimate dietary exposure if study designs do
not account for contamination of foods from
indoor sources, such as handling of food by
children who also contact contaminated sur-
faces or dust (Melnyk et al. 2000). Finally,
duplicate diet studies are valid for the period
over which the samples were collected (e.g.,
24 hr) but may not reflect chronic exposures.
Laboratory methods for food often require
extensive cleanup steps to address fatty and
nonfatty foods. Some researchers recommend
that acidic foods (e.g., fruit) be collected sepa-
rately from nonacidic foods (e.g., bread),
potentially increasing participant burden and
the possibility of error.

Questionnaire-based evaluations have also
been used to assess dietary exposures. The key
questions that these methods address are how
much and what types of food are being eaten
and what are the pesticide levels in these foods
when eaten (after preparation and handling).
Questionnaire methods including 24-hr food
recall and food-frequency questionnaires, and
diaries can be used to estimate the types and
amounts of food individuals are eating. This
information can then be linked to national
food pesticide residue data (e.g., California
Department of Pesticide Regulation 2005a;
USDA 2005) to estimate the range of individ-
ual exposures. Finally, questionnaires can also
be used to classify food consumption patterns
that relate to exposure (and nutrition).
Examples include the timing of the transition
in young children from liquid to solid foods (at
4–6 months) and the consequent increase in
consumption of potentially contaminated
grains or produce. Before 4–6 months, virtu-
ally all dietary exposures, if present, will be due
to contamination of formula (powder or water)
and possibly breast milk (discussed above).

Infant formula. Several studies have inves-
tigated pesticide contamination in milk- or
soy-based infant formula. In the United States,
Gelardi and Mountford (1993) reviewed tests
on 2,043 milk-derived samples and 1,141 soy-
derived samples by formula manufacturers.
Thirty-four target pesticides included OPs, car-
bamates, herbicides, and several fungicides
(National Academy of Sciences 1993) (persis-
tent organic pollutants were not included). No
detectable results were reported. All detection
limits were < 1.0 ppm, with most detection
limits < 0.005 ppm. We did not find any U.S.
studies funded by nonindustry sources. In
Canada, Newsome et al. (2000) tested six com-
posite milk-based and six composite soy-based
formula samples for a wide array of pesticides,
including OPs, carbamates, herbicides, and
persistent organic compounds (i.e., DDT,
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etc.). The sampling scheme was designed to
represent the Canadian infant diet. No pesti-
cides were detected in these composite samples.
Studies in New Zealand, India, and Spain
report positive detections for several pesticides,
including DDT and derivatives, hexachloro-
benzene, hexachlorocyclohexane, heptachlor,
aldrin, endrin, azinphos-methyl, pirimiphos-
methyl, dimethoate, and malathion. Overall,
these studies suggest that pesticide contamina-
tion in infant formula in North American and
other developed countries is low and unlikely
to be a major source of infant exposure.

Drinking water. Drinking water may also
be a source of pesticide exposure, particularly
in agricultural communities. In the late 1980s
the U.S. EPA undertook a nationwide survey
of pesticide contamination in groundwater
(Nadakavukaren 2000). The study found that
14% of all public and private drinking-water
well samples had measurable levels of at least
one pesticide. Subsequent analyses showed
that nearly one-third of rural wells sampled
had pesticide contamination, with aldicarb
and the herbicides atrazine and alachlor being
the most widespread. Agricultural pesticide
use was the main source (Nadakavukaren
2000). The PDP recently initiated monitoring
of finished waters at drinking water treatment
plants in New York and California states as a
pilot program for a nationally representative
drinking water assessment program (USDA
2001). New York and California were initially
chosen because they represent diverse climate,
geology, and land use and are highly popu-
lated. In the near future, monitoring sites will
be expanded to include Texas, Kansas, and
Colorado. The PDP screens for more than
150 pesticides and metabolites, with detection
limits in the part-per-trillion range; 297 sam-
ples were tested in 2001, the most recent year
with published data. Overall, “positive detec-
tions were reported in 145 (40%) of the sam-
ples”; the detects were primarily of widely
used herbicides. Atrazine or its metabolites
were detected in 42–60% of the samples
tested (concentration range = 5–500 ppt).
Simazine was detected in 15% of samples (con-
centration range = 13–93 ppt). Metolachlor,
metolachlor ethanesulfonic acid, or meto-
lachlor oxanilic acid (OA) was detected in
10–50% of samples, with concentrations
ranging up to 4,420 ppt (OA). Alachlor or
metabolites were detected in 4% of samples.
Detection frequencies for other compounds
were all below 1%, including bentazon, diazi-
non, malaoxon, metribuzin, or propanil.

The California Department of Pesticide
Regulation monitors surface and well waters
statewide. Diazinon, dimethoate, chlor-
pyrifos, carbaryl, DDE, DDT, diuron, and
oxamyl have been detected in surface water
(concentration range = 0.1–2.8 µg/L), and
1,2-dichloropropane, 2,4-D, atrazine,

dibromochloropropane, ethylene dibromide,
heptachlor, simazine, bromacil, diuron, and
hexazinone in well waters (California
Department of Pesticide Regulation 2005b).
Overall, detection frequencies are low (9%,
with ultimately 0.5% verified in 2001).
Melnyk et al. (1997) tested drinking water in
Iowa and North Carolina for 32 pesticides,
including OPs, carbamates, herbicides, and
organochlorines; none were detected. Zaki
et al. (1982) reported aldicarb in 52% of
groundwater samples collected in Suffolk
County, New York (concentration range up
to > 75 µg/L). Little or no pesticides were
found in municipal drinking water in the
Nonoccupational Pesticide Exposure Study
(Whitmore et al. 1994). In summary, avail-
able data suggest that widespread contamina-
tion of drinking water by herbicides may
contribute to chronic exposures in some parts
of the United States. Although other com-
pounds have been detected in surface and well
waters, available data suggest that contamina-
tion is limited to isolated communities or
households and does not result in population-
wide exposures. Although the core NCS
hypotheses do not focus on nonpersistent her-
bicides, laboratory methods for measuring
herbicides in biologic samples are available for
future studies of archived material.

Questionnaire Data and
Ecologic Analyses
It is unlikely that questionnaires alone will
prove adequate data for pesticide exposure
classification (Sexton et al. 2003). However,
questionnaires can provide an important sup-
plement to environmental and biologic moni-
toring. For example, results from ongoing
studies by the Children’s Environmental
Health Centers funded by the U.S. EPA and
National Institute of Environmental Health
Sciences have found that questionnaires are
able to provide information about residential
use habits but are rarely able to obtain more
detailed information on specific chemicals
(Fenske et al. 2005). In preliminary analyses of
questionnaires administered by the Columbia
Center for Children’s Environmental Health,
women provided a pesticide product name for
fewer than half the pest control methods
reported to be used in the home during preg-
nancy and, in particular, were rarely able to
identify the pesticide products used by an
exterminator (Fenske et al. 2005). Further,
pesticide products can have the same brand
name but contain different active ingredients,
further complicating use of questionnaire data
in pesticide exposure assessment. A visual
inspection of active ingredients in pesticide
products in the home can be used to supple-
ment questionnaire data. Questionnaires can
also provide information about exposure-
related events in a household that would not be

captured by biomonitoring. For example, a
short-term exposure related to a single pesticide
application, such as a “bomb” fumigant, may
not result in a detectable exposure in a biologic
sample collected several weeks later. Finally,
questionnaires can provide basic information
about milestones in child behavior that explain
changes in exposure, such as the transition to
solid foods noted above or the onset of crawl-
ing and walking that may lead to increased
dermal contact with their environment.

Geographic information systems (GIS)
provide a tool to evaluate information on pes-
ticide use or landscape features to classify
exposure. For GIS analyses, pesticide use
reporting (PUR) data must be geographically
coded. Several states compile data on agricul-
tural pesticide use. In California 100% of all
agricultural pesticide use is reported to the
state and geocoded to one-square-mile sections
based on the Public Lands Survey System
(PLSS). In several epidemiologic studies,
researchers have then linked these data to resi-
dential addresses to classify exposure based on
the amount of nearby pesticide use (Bell et al.
2001; Gunier et al. 2001; Reynolds et al.
2002, 2004). In a case–control study of still-
births, Ihrig et al. (1998) linked residential
address to geographically based estimates of
arsenic exposure from an agricultural chemical
manufacturing facility. This approach could
be a model for nested case–control studies
within the NCS. Other researchers have used
GIS and land-use data to classify residential
proximity to croplands as an exposure metric
(Ward et al. 2000a, 2000b; Xiang et al. 2000).

Classifying pesticide exposure using these
types of ecologic analyses has many limita-
tions. For example, nearby pesticide use does
not necessarily result in exposure, and if it
does, exposure may vary depending on prox-
imity to a given application (which can vary
greatly within a PLSS section), weather con-
ditions, daily activity patterns, and so forth.
In a simulation study of exposure misclassifi-
cation and bias using PUR data, Rull and
Ritz (2003) found that accounting for nearby
cropping patterns, seasonality, mobility, and
other factors was necessary to improve the
“spatiotemporal resolution of pesticide expo-
sure models.” Researchers in Washington
State have found higher pesticide levels in
house dust and urinary metabolite levels in
children for households living close to fields
compared with those living farther away (Lu
et al. 2000; Simcox et al. 1995). Other
researchers have not found these relationships
(Royster et al. 2002). Differences in crop
(orchard vs. row crop), pesticide application
methods, climate, sampling methods, etc.,
could explain these findings. Clearly, addi-
tional studies are needed to determine whether
ecologic exposure measurements are valid for
large-scale epidemiologic studies.
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Discussion
Quantifying exposure to nonpersistent pesti-
cides in the NCS will be challenging
(Needham et al. 2005). Exposures are likely to
be variable, can occur simultaneously from
multiple routes (dietary and nonintentional
ingestion, inhalation, and dermal absorption),
and can vary dramatically within a particular
group or across populations depending on use
patterns. These circumstances will require
intensive sampling and a repeat-measurement
design and will likely necessitate use of a com-
bination of both environmental and biologic
monitoring supported by questionnaire infor-
mation. Özkaynak et al. (2005) provide an
overview of the steps necessary in selecting
appropriate exposure assessment methods in
the NCS. The framework presented in
Tables 1 and 2 outlines assessment methods
specific for characterizing pesticide exposures
for a longitudinal epidemiologic study of
neurodevelopmental outcomes in children.
Experimental evidence indicates that the win-
dow of susceptibility for neurotoxic pesticides
is likely during nervous system development
(Slotkin 1999). Thus, the prenatal and early
postnatal periods are the key critical life stages
during which pesticide exposure must be care-
fully assessed. The initial step in selecting the
exposure assessment methods will include an
evaluation of whether the exposure at the criti-
cal life stage can be reliably estimated using
questionnaire data alone or another indirect
low-cost, low-burden measure of exposure. In
most instances these measurements alone will
not provide reliable dosimeters for pesticide
exposures and will need to be supplemented by
other methods. However, the survey instru-
ments will be useful to assess household infor-
mation directly related to pesticide exposures,
including household practices such as home
pesticide use, food consumption trends,
address changes, and so forth. Where feasible,
GIS and other ecologic methods should be
used. At the very least, the latitude and longi-
tude coordinates of each home should be
determined for future studies of pesticides or
other environmental exposures. It is also
important that questionnaires and other in-
direct exposure measurements be validated
against more direct measures (e.g., biologic or
environmental monitoring).

In selecting the direct measurements, the
researcher must decide whether to collect a
biologic or an environmental sample, or some
combination of both. Given the complexity of
assessing exposure to nonpersistent pesticides,
it is likely that both environmental and bio-
logic sampling will be needed for many com-
pounds. It is important to realize, however,
that although efforts to assess children’s pesti-
cide exposures have increased dramatically in
the last decade, most exposure assessment
methods are not fully validated for use in an

epidemiologic study. Despite these limitations,
a strong case can be made for collecting bio-
logic and environmental samples to character-
ize children’s exposure for the NCS. Tables 1
and 2 include the primary media we believe
should be collected to assess pesticide exposure:
a) urine from mothers and children, b) mater-
nal and child blood with blood collection
linked to scheduled medical tests, c) cord
blood, and d) air and/or house dust or wipe
samples. Meconium, breast milk, and saliva
should also be collected and stored for future
use. Validation studies are currently in progress
that will provide key information about pesti-
cide exposure assessment methods (Bradman
et al. 2003; Fenske et al. 2005; Kieszak et al.
2002; Kissel et al. 2005; Whyatt and Barr
2001; Whyatt et al. 2003). Additionally, sev-
eral birth cohort studies have successfully used
blood and urinary metabolite exposure markers
to assess relationships between nonpersistent
pesticide exposure and adverse health out-
comes in newborns (Berkowitz et al. 2004;
Eskenazi et al. 2004; Whyatt et al. 2004b). In
some cases the findings of these studies are not
consistent. However, these studies have
demonstrated the feasibility of collecting envi-
ronmental and biologic samples, including
blood and urine, for large cohort studies.
Finally, each project has also stored a variety of
samples that will ultimately allow replication of
each study and direct assessment of key criteria
necessary to judge causal relationships.
Planning for the NCS should be forward-
looking and include resources to bank a variety
of sample types to ensure that new or
improved laboratory methods can be applied
when they become available. Other exposure
assessment methods should be considered for
specialized exposure or health outcome studies
that involve a subset of participants. These
methods could include measuring pesticides in
duplicate diet or breast milk samples, or other
media (reviewed above). Information from
new validation studies should be continuously
monitored to improve exposure assessment
protocols for this long-term prospective study.
For example, exploratory studies of semiper-
meable membranes that absorb pesticides or
wipe and settled dust-sampling techniques may
provide less expensive strategies to assess expo-
sure (Robertson et al. 2003). Participant incen-
tives should also be carefully chosen to
maintain retention and encourage cooperation.
For example, some participants could be pro-
vided with vacuum samplers to collect house
dust. Participant burden will be a key factor to
consider when choosing exposure assessment
methods. Initial pilot studies for the NCS
should determine what is feasible for partici-
pants and tailor protocols to accommodate
participant needs. Recent birth cohort studies
have implemented protocols approximating
the sampling framework presented in Tables 1

and 2. These efforts, however, require inten-
sive staff time to collect the information and
samples and to maintain retention. They also
require a major time commitment by partici-
pants and are logistically challenging, espe-
cially when different visit types (e.g., prenatal,
delivery, child) with different women are
occurring simultaneously.
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